10 Istilah AI yang Patut Diketahui

10 Istilah AI yang Patut Diketahui Foto: Getty Images/iStockphoto/Sitthiphong--

Mesin tidak memiliki pikiran atau perasaan, tetapi kadang-kadang terdengar seakan memiliki opini sendiri, karena mereka telah mempelajari pola yang membantu mereka merespons layaknya manusia. LLM sering disesuaikan kembali (fine-tuned) oleh developer menggunakan proses yang disebut reinforcement learning from human feedback (RLHF) untuk membantu model menghasilkan output percakapan yang terdengar lebih natural.

4. AI generatif (Generative AI)

Generative AI memanfaatkan kekuatan large language models untuk membuat hal baru, bukan hanya mengulang atau memberikan informasi yang sudah ada. Generative AI mempelajari pola dan struktur, dan kemudian menghasilkan sesuatu yang mirip namun baru. Generative AI dapat membuat hal-hal seperti gambar, musik, teks, video, dan code. Ia dapat digunakan untuk membuat karya seni, menulis cerita, mendesain produk, dan bahkan membantu dokter mengerjakan tugas administratif.

Namun, ia juga dapat digunakan oleh aktor jahat untuk membuat berita palsu, atau gambar yang terlihat seperti foto tetapi tidak nyata. Karena itu, perusahaan teknologi sedang mengembangkan cara untuk mengidentifikasi konten yang dihasilkan AI dengan jelas.

5. Halusinasi

Sistem generative AI dapat membuat cerita, puisi dan lagu, tetapi kadang-kadang manusia ingin hasil dari generative AI didasarkan pada kebenaran. Karena sistem AI tidak dapat membedakan antara yang nyata dan palsu, generative AI dapat memberikan tanggapan yang tidak akurat.

Fenomena ini disebut developer sebagai halusinasi, atau istilah yang lebih akurat, fabrikasi. Ini mirip seperti saat seseorang melihat sesuatu yang mirip seperti garis wajah manusia di bulan, dan mengatakan bahwa betul-betul ada manusia di bulan.

Developer mencoba menyelesaikan isu ini melalui "grounding", sebuah teknik memberikan informasi tambahan dari sumber tepercaya kepada sistem AI, untuk meningkatkan akurasi AI tentang topik tertentu. Kadang-kadang prediksi sistem juga bisa salah jika model tidak memiliki informasi terkini.

6. AI yang bertanggung jawab (Responsible AI)

Responsible AI memandu manusia kala mencoba merancang sistem yang aman dan adil di setiap level, termasuk model machine learning, perangkat lunak, user interface, serta aturan dan batasan yang diberlakukan untuk mengakses aplikasi. Praktik Responsible AI adalah elemen penting karena sistem AI sering ditugaskan untuk membantu membuat keputusan penting yang menyangkut manusia, seperti dalam bidang pendidikan dan kesehatan.

Namun, karena AI dibuat oleh manusia dan dilatih menggunakan data dari dunia yang tidak sempurna, AI dapat mencerminkan bias tertentu. Karena itu, salah satu kunci dari praktik Responsible AI adalah memahami data yang digunakan untuk melatih sistem tersebut dan mencari cara untuk mengatasi kelemahannya, agar hasilnya dapat mencerminkan masyarakat secara luas, bukan hanya kelompok-kelompok tertentu.

7. Model multimodal (multimodal models)

Model multimodal dapat bekerja dengan berbagai jenis atau mode data secara bersamaan. Ia dapat melihat gambar, mendengarkan suara, dan membaca kata-kata. Dengan kata lain, model multimodal adalah multitasker sejati! Model ini dapat menggabungkan semua informasi untuk melakukan tugas seperti menjawab pertanyaan tentang gambar.

8. Prompts

Prompt adalah instruksi yang dimasukkan ke dalam sistem menggunakan bahasa, gambar, atau code untuk memberi tugas kepada AI. Para engineer — dan kita semua yang berinteraksi dengan sistem AI — harus merancang prompt dengan hati-hati untuk mendapatkan hasil yang diinginkan.

Tag
Share
Berita Terkini
Berita Terpopuler
Berita Pilihan
IKLAN
PRABUMULIHPOSBANNER